Publications

2017

Diversity Redoxome Reactivity Profiles of Carbon Nucleophiles

Gupta, V.; Yang, J.; Liebler, D.; Carroll, K. S. J. Am. Chem. Soc. 2017, DOI: 10.1021/jacs.7b01791.

Please reload

Functional site discovery in a sulphur metabolism enzyme using directed evolution

Paritala, H.; Palde, P. B.; Carroll, K. S. ChemBioChem 2016, 17(19): 1873-8, PMID27411165

Molecular basis for redox activation of epidermal growth factor receptor kinase

Truong, T. H.; Ung, P. M.; Paulsen, C. E.; Prakash, P. B.; Schlessinger, A.; Carroll, K. S. Cell Chem. Biol. 2016, 23(7): 837-48, PMC4958504.

An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag

Garcia, F. J.; Carroll, K. S. Mol. Biosystems 2016, 12(6): 1790-8, PMC4879066.

Reactivity, selectivity, and stability in sulfenic acid detection: A comparative study of nucleophilic and electrophilic probes

Gupta, V.; Carroll, K. S. Bioconj. Chem. 2016, 27(5): 1411-8, PMC4886738.

Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles

Gupta, V.; Carroll, K. S. Chem. Comm. 2016, 52(16): 3414-7, PMC4830130.

First-in-class inhibitors of sulfur metabolism with bactericidal activity against non-replicating M. tuberculosis

Palde, P. B.; Bhaskar, A.; Pedró Rosa, L. E.; Madoux, F.; Chase, P. Gupta, V.; Spicer, T.; Scampavia, L.; Singh, A.; Carroll, K. S. ACS Chem. Biol. 2016, 11(1): 172-84, PMC4729198. *Highlighted in Nat. Chem. Biol. 2016.*

Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid

Gupta, V.; Carroll, K. S. Chem. Sci. 2016, 7(1): 400-15, PMC4724439.

The expanding landscape of the thiol redox proteome

Yang. J.; Carroll, K. S.; Liebler, D. C. Mol. Cell Proteomics 2016, 15(1): 1-11, PMC4762510.

Please reload

2015

2016

 
 

Light-mediated sulfenic acid generation from photocaged cysteine sulfoxide

Pan, J.; Carroll, K. S. Org. Lett. 2015, 17(24): 6014-7, PMC4699549.

A chemical approach for the detection of protein sulfinylation

Lo Conte, M.; Lin, J.; Wilson, M. A.; Carroll, K. S. ACS Chem. Biol. 2015, 10(8): 1825-30, PMC4605140.

Site-specific proteomic mapping identifies selectively modified regulatory cysteine residues in functionally distinct protein networks

Gould, N. S.; Evans, P.; Martinez-Acedo, P.; Marino, S. M.; Gladyshev, V. N.; Carroll, K. S.; Ischiropoulos, H. Chem. & Biol. 2015, 22(7): 965-75, PMC4515171.

Global, in situ, site-specific analysis of protein S-sulphenylation

Yang, J.; Gupta, V.; Tallman, K. A.; Porter, N. A., Carroll, K. S.; Liebler, D. C. Nat. Protoc. 2015, 10(7): 1022-37, PMC4608369

A universal entropy-driven mechanism for thioredoxin-target recognition

Palde, P. B.; Carroll, K. S. Proc. Natl. Acad. Sci. USA 2015, 112(26): 7960-5, PMC4491776.

DYn-2 based identification of Arabidopsis sulfenomes

Aketer, S.; Huang, J.; Bodra, N.; De Smet, B.; Wahni, K.; Rombaut, D.; Pauwels, J.; Gevaert, K.; Carroll, K. S.; Van Breusegem, F.; Messens, J. Mol. Cell. Proteomics 2015, 14(5): 1183-200, PMC4424392.

Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NAPDH oxidase proteins

Brewer, T. F.; Garcia, F. J.; Onak, C. S.; Carroll, K. S.; Chang, C. J. Annu. Rev. Biochem. 2015, 84: 765-90.

Design, synthesis and evaluation of Fe-S targeted adenosine 5’-phosphate reductase inhibitors

Paritala, H.; Suzuki, Y.; Carroll, K. S. Nucleos. Nucleot. Nucl. 2015, 34(3): 199-220, PMC4341950.

Please reload

2014

 

Redox-based probes as tools to monitor oxidized protein tyrosine phosphatases

Garcia, F. J.; Carroll, K. S. Euro. J. Med. Chem. 2014, 88(12): 28-33, PMC4254195.

Site-specific mapping and quantification of protein S-sulphenylation in cells

Yang, J.; Gupta, V.; Carroll, K. S.; Liebler, D. C. Nat. Commun. 2014, 5: 4776, PMC4167403.

Proteomic analysis of peptides tagged with dimedone and related probes

Matinez-Acedo, P.; Gupta, V.; Carroll, K. S. J. Mass Spec. 2014, 49(4): 257-65, PMC4070747.

Chemical biology approaches to study protein cysteine sulfenylation

Pan J.; Carroll K. S. Biopolymers 2014, 101(2): 165-72, PMC3919879.

Sulfenic acid chemistry, detection and cellular lifetime

Gupta, V.; Carroll, K. S. Biochim. Biophys. Acta. 2014, 1840(2): 847-75, PMC4184475.

Detection of protein S-sulfhydration by a tag-switch technique

Zhang D.; Macinkovic I.; Devarie-Baez N. O.; Pan J.; Park C. M.; Carroll K. S.; Filipovic M. R.; Xian M. Angew. Chem. Int. Ed. 2014, 53(2): 575-81, PMC4306352.

Reengineering redox-sensitive GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during infection

Bhaskar, A.; Chawla, M.; Mehta, M.; Parikh, P.; Chandra, P.; Luxenburger, A.; Bhave, D. P.; Carroll, K. S.; Singh, A. PLoS Pathogens 2014, 10(1): e1003902, PMC3907381.

Please reload

2013

 

The redox biochemistry of protein sulfenylation and sulfinylation

LoConte, M.; Carroll, K. S. J. Biol. Chem. 2013, 288(37): 26480-88, PMC3772195.

Downregulation of tumor growth and invasion by redox-active nanoparticles

Alili L.; Sack M.; von Montfort C.; Giri S.; Das S.; Carroll K. S.; Zanger K.; Seal S.; Brenneisen P. Antioxid. Redox Signal. 2013, 19(8): 765-78, PMC3752511.

A continuous spectrophotometric assay for APS reductase activity with sulfite-selective probes

Paritala H.; Carroll K. S. Anal. Biochem. 2013, 440(1): 32-9, PMC3714338

Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery

Paulsen, C. E.; Carroll, K. S. Chem. Rev. 2013, 113(7): 4633-79, PMC4303468.

Redox-regulation of protein kinases

Truong, T. H.; Carroll, K. S. Crit. Rev. Biochem. Mol. Biol. 2013, 48(4): 332-56, PMC4358782.

New targets and inhibitors of mycobacterial sulfur metabolism

Paritala H.; Carroll, K. S. Infect. Dis. Drug Targets 2013, 13(2): 85-115, PMC4332622.

Efficient microwave-assisted solid phase coupling of nucleosides, small library generation, and mild conditions for release of nucleoside derivatives

Paritala, H.; Suzuki, Y.; Carroll, K. S. Tet. Lett. 2013, 54(14), 1869-72, PMC3684988.

RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid

Wu, J.; Cheng, Z.; Reddie, K. G.; Carroll, K. S.; Hammand, L. A., Karty, J. A.; Bauer, C. E. J. Biol. Chem. 2013, 288(7): 4755-62, PMC3576080.

Persulfide reactivity in the detection of protein S-sulfhydration

Pan J.; Carroll K. S. ACS Chem. Biol. 2013, 8(6): 1110-6, PMC3745995.

Regulation of A20 and other OTU deubiquitinases by reversible oxidation

Kulathu, Y.; Garcia, F.; Busch, M.; Mevissen, T.; Arnaudo, N.; Carroll, K. S.; Barford, D.; Komander, D. Nat. Comm. 2013, 4: 1569, PMC4176832.

The chemistry of thiol oxidation and detection

Lo Conte, M.; Carroll, K. S. in Oxidative stress and redox regulation. Jakob, U. Ed.; Springer: New York, 2013, Chapter 1, p. 1-42.

Please reload

2012

 

Redox-regulation of epidermal growth factor receptor signaling through cysteine oxidation

Truong, T. H.; Carroll, K. S. Biochemistry. 2012, 51(50): 9954-65, PMC3525721. *Invited Current Topics Article*

Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50Cdc37 complex and direct interactions with amino acid residues of Hsp90

Li, Y.; Karagoz, G. E.; Seo, Y. H.; Zhang, T.; Jiang, Y.; Yu, Y.; Duarte, A. M. S.; Schwartz, S. J.; Boelens, R.; Carroll, K. S.; Rudiger, S. G. D.; Sun, D. J. Nutr. Biochem. 2012, 23(12): 1617-26, PMC3386376.

Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel, Kv1.5

Svoboda L. K.; Reddie K. G.; Zhang L.; Vesely E. D.; Williams E. S.; Schumacher S. M.; O'Connell R. P.; Shaw R.; Day S. M.; Anumonwo J. M.; Carroll K. S.; Martens J. R. Circ. Res. 2012, 111(7), 842-53, PMC3657842.

Tetrapyrrole regulator CrtJ contains a redox active cysteine in a DNA-binding domain that controls activity

Cheng, Z.; Wu, J.; Setterdahl, A.; Reddie, K. G.; Carroll, K. S.; Bauer, C. E. Mol. Micro. 2012, 85(4), 734-46, PMC3418406.

Chemoselective ligation of sulfinic acids with aryl-nitrso compounds

Lo Conte, M.; Carroll, K. S. Angew. Chem. Int. Ed. 2012, 51(26): 6502-5, PMC3523331.

Inactivation of thiol-dependent enzymes by HOSCN: Role of sulfenyl thiocyanate and sulfenic acid intermediates

Barrett, T. J.; Pattison, D. I.; Leonard, S. E.; Carroll, K. S.; Davies, M. J.; Hawkins, C. L. Free Radic. Biol. Med. 2012, 52(6): 1075-85, PMC3523338.

Iron-sulfur cluster engineering provides insight into the evolution of substrate specificity among sulfonucleotide reductases

Bhave, D. P.; Hong, J. A.; Keller, R. L.; Krebs, C.; Carroll, K. S. ACS Chem. Biol. 2012, 7(2): 306-13, PMC3288176.

Bioorthogonal chemical reporters for analyzing protein sulfenylation in cells

Truong, T. H.; Carroll, K. S. Curr. Prot. Chem. Biol. 2012, 4(6): 101-22.

Please reload

2011

Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity

Paulsen, C. E.; Truong, T. H.; Garcia, F. J.; Homann, A.; Gupta, V.; Leonard, S. E.; Carroll, K. S. Nat. Chem. Biol. 2011, 8(1), 57-64, PMC3528018. *Highlighted in C&E News 2011, December 12: p. 26 and Sci. Signal. 2012, 5: pe10.*

Isotope-coded chemical reporter and acid-cleavable affinity reagents for monitoring protein sulfenic acids

Truong, T. H.; Garcia, F. J.; Seo, Y. H.; Carroll, K. S. Bioorg. Med. Chem. Lett. 2011, 21(17): 5015-20. *Special issue in honor of Prof. Carolyn Bertozzi.*

Mass spectrometric analysis of mycothiol levels in wild-type and mycothiol disulfide reductase mutant Mycobacterium smegmatis

Holsclaw, C. M.; Muse, W. B. III; Carroll, K. S.; Leary, J. A. Int. J. Mass. Spectrom. 2011, 305(2-3): 151-6, PMC3156591.

Deciphering the role of His252 in mycobacterial APS reductase catalysis

Hong, J. A.; Carroll, K. S. J. Biol. Chem. 2011, 286(32): 28567-73, PMC3151098.

Geometric and electrostatic study of the [4Fe-4S] cluster of adenosine-5′-phosphosulfate reductase from broken symmetry density functional calculations and extended X-ray absorption fine structure spectroscopy

Bhave, D. P.; Han, W.G.; Pazicni, S.; Penner-Hahn, J. E.; Carroll K. S.; Noodleman, L. J. Inorg. Chem. 2011, 50(14): 6610–25, PMC3134165.

Redox-based probes for protein tyrosine phosphatases

Leonard, S. E.; Garcia, F. J.; Goodsell, D. S.; Carroll, K. S. Angew. Chem. Int. Ed. 2011, 50(19): 4423-7.

Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone

Seo, Y. H.; Carroll, K. S. Angew. Chem. Int. Ed. 2011, 50 (6), 1342-45. *Selected by reviewers as a “Very Important Paper” (top 5% of manuscripts). Highlighted in C&E News 2011, February 7: p. 28 and ChemBioChem 2011, 12: p. 841.*

'Omics' of natural products and redox biology

Dorrestein, P. C.; Carroll, K. S. Curr. Opin. Chem. Biol. 2011, 15(1); 3-4.

Chemical ‘omics’ approaches for understanding protein cysteine oxidation in biology

Leonard, S. E.; Carroll, K. S. Curr. Opin. Chem. Biol. 2011, 15(1): 88-102.

Knock, Nox – ROS there?

Carroll, K. S. Nat. Chem. Biol. 2011, 7(2): 71-2.

Spectroscopic studies on the [4Fe-4S] cluster in adenosine 5’-phosphosulfate reductase from Mycobacterium tuberculosis

Bhave, D. P.; Hong, J. A.; Lee, M.; Jiang, W.; Krebs, C.; Carroll, K. S. J. Biol. Chem. 2011, 286(2): 1216-26, PMC3020729.

Please reload

 
 

2010

Orchestrating redox signaling networks through regulatory cysteine switches

Paulsen, C. E.; Carroll, K. S. ACS Chem. Biol. 2010, 5(1): 47-62, PMC4537063.

Please reload

 

2009

A periplasmic reducing system protects single cysteine residues from oxidation

Depuydt, M.; Leonard, S. E.; Vertommen, D.; Swisser, F.; Denoncin, K.; Morsomme, P.; Messens, J.; Carroll, K. S.; Collet, J. F. Science 2009, 326(5956): 1109-11. *Highlighted in Sci. Signal. 2009, 2: ec381.*

Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies

Seo, Y. H.; Carroll, K. S. Proc. Natl. Acad. Sci. USA 2009, 106(38): 16163-76, PMC2741475.

Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells

Leonard, S. E.; Reddie, K. G.; Carroll, K. S. ACS Chem. Biol. 2009, 4 (9), 783-99. *Number one-cited research article in ACS Chem. Biol. (20092011). Highlighted in C&E News 2009, October 5: p. 38.*

Identification of critical ligand binding determinants in Mycobacterium tuberculosis adenosine-5’-phosphosulfate reductase

Hong, J. A.; Bhave, D. P.; Carroll, K. S. J. Med. Chem. 2009, 52(17): 5485-95, PMC2749248.

Chemical dissection of an essential redox switch in yeast

Paulsen, C. E.; Carroll, K. S. Chem. & Biol. 2009, 16(2), 217-25.

Facile synthesis and biological evaluation of a cell-permeable probe to detect redox-regulated proteins

Seo, Y. H.; Carroll, K. S. Bioorg. Med. Chem. Lett. 2009, 19(2), 356-9.

Please reload

 

2008

Expanding the functional diversity of proteins through cysteine oxidation

Reddie, K. G.; Carroll, K. S. Curr. Opin. Chem. Biol. 2008, 12(6): 746-54.

Structure-based virtual screening and biological evaluation of Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase inhibitors

*Cosconati, S.; *Hong, J. A.; Novellino, E.; Carroll, K. S.; Goodsell, D. S.; Olson, A. J. J. Med. Chem. 2008, 51(21): 6627-30, PMC2639213. *Co-first authors.

Empirical entropic contributions in computational docking: Evaluation in APS reductase complexes

Chang, M. W.; Belew, R. K.; Carroll, K. S.; Olson, A. J.; Goodsell, D. S. J. Comput. Chem. 2008, 29(11), 1753-61, PMC3052286.

A chemical approach for detecting sulfenic acid-modified proteins in living cells

Reddie, K. G.; Seo, Y. H.; Muse III, W. B.; Leonard, S. E.; Carroll, K. S. Mol. Biosyst. 2008, 4(6): 521-31, PMC3529510. *Emerging investigator’s issue. Highlighted in Nat. Chem. Biol. 2008, 4, 277 and Chem. Biol. RSC 2008, March 14.*

Please reload

 

2007

Drug targets in mycobacterial sulfur metabolism

Bhave, D. P.; Muse, W. B., III; Carroll, K. S. Infect. Disord.Drug.Targets 2007, 7(2): 140-58, PMC3106421.

3'-Phosphoadenosine-5'-phosphosulfate reductase in complex with thioredoxin: A structural snapshot in the catalytic cycle

*Chartron, J.; *Shiau, C.; Stout, C. D.; Carroll, K. S. Biochemistry 2007, 46(13): 3942-51, PMC3109433. *Co-first authors. Accelerated Publication.*

Noncovalent complexes of APS reductase from M. tuberculosis: Delineating a mechanistic model using ESI-FTICR MS

Gao, H.; Leary, J.; Carroll, K. S.; Bertozzi, C. R.; Chen, H. J. Am. Soc. Mass Spectrom. 2007, 18(2): 167-78, PMC2755055.

Please reload

 

2006 - 1996

Substrate recognition, protein dynamics, and iron-sulfur cluster in Pseudomonas aeruginosa adenosine 5'-phosphosulfate reductase

*Chartron, J.; *Carroll, K. S.; Shiau, C.; Gao, H.; Leary, J. A.; Bertozzi, C. R.; Stout, C. D. J. Mol. Biol. 2006, 364(2): 152-69. *Co-first authors.

Investigation of the iron-sulfur cluster in Mycobacterium tuberculosis APS reductase: Implications for substrate binding and catalysis

Carroll, K. S.; Gao, H.; Chen, H.; Leary, J. A.; Bertozzi, C. R. Biochemistry 2005, 44(44): 14647-57.

A conserved mechanism for sulfonucleotide reduction

Carroll, K. S.; Gao, H.; Chen, H.; Stout, C. D.; Leary, J. A.; Bertozzi, C. R. PLoS Biol. 2005, 3(8): e250, PMC1175818.

Rab9 GTPase regulates late endosome size and requires effector interaction for its stability

Ganley, I. G.; Carroll, K. S.; Bittova, L.; Pfeffer, S. Mol. Biol. Cell 2004, 15(12): 5420-30, PMC532021.

Challenges in enzyme mechanism and energetics

Kraut, D. A.; Carroll, K. S.; Herschlag, D. Annu. Rev. Biochem. 2003, 72: 517-71.

Probing the Tetrahymena group I ribozyme reaction in both directions

Karbstein, K.; Carroll, K. S.; Herschlag, D. Biochemistry 2002, 41(37): 11171-83.

Identification of residues in TIP47 essential for Rab9 binding

Hanna, J.; Carroll, K. S.; Pfeffer, S. R. Proc. Natl. Acad. Sci. 2002, 99(11): 7450-4, PMC124251.

Role of Rab9 GTPase in facilitating receptor recruitment by TIP47

Carroll, K. S.; Hanna, J.; Simon, I.; Krise, J.; Barbero, P.; Pfeffer, S. R. Science 2001, 292(5520): 1373-6.

Mechanisms of spectral tuning in blue cone visual pigments: Visible and Raman spectroscopy of blue shifted rhodopsin mutants

Lin, S. W.; Kochendoerfer, G. G.; Carroll, K. S.; Wang, D.; Mathies, R. A.; Sakmar, T. P. J. Biol. Chem. 1998, 273(38): 24583-91.

VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells

Sundberg, C.; Meek, L.; Carroll, K. S.; Das, A.; Ream, W. J. Bacteriol. 1996, 178(4): 1207-12, PMC177787.

Please reload